Vibrations in engineering and technology


Issue №: 1(100)

Published: 2021.03.23
DOI: 10.37128/2306-8744-2021-1

The journal deals with the problems of vibration technologies and machines, mathematical methods of vibration process studies, information on design and technological development, presents teaching and methodological aspects of teaching in the Higher School of Applied Sciences, where vibration machines and technologies are studied.

Read about journal


DOI: 10.37128/2306-8744-2021-1-12
PDF Повернутись

Gaidamak Oleg Leonidovich - Candidate of Science (Engineering), Associate Professor, Associate Professor of the Department of Power engineering, electrical engineering and electromechanics of Vinnitsa National Agrarian University .

Matviychuk Viktor Andreevich - Doctor of Technical Sciences, Professor, Dean of the Faculty of Engineering and Technology of Vinnitsa National Agrarian University (3 Soniachna St., Vinnitsa, Ukraine, 21008, e-mail: vamatv50@gmail.com).



The article presents the results of research of spraying processes of composite electrically conductive coatings using copper C01-11 and aluminum A20-11 powders in order to determine the effect of components on each other in the formation of cold gas-dynamic spraying (CGDS) and the development of recommendations for the introduction of additional component to obtain a composite coating with a given ratio of different components. For example, when at a working air temperature of 300 ° C the copper sputtering coefficient is almost zero, it is a search for the experimental dependence of the sputtering coefficient change depending on the percentage of components of copper and aluminum powders in the sprayed mixture and determination of their residual content in the coating. based on the obtained data of the sputtering coefficients of copper and aluminum.

 The CGDS method obtained blanks with composite coatings from mixtures of powders of aluminum A20-11 and copper C01-11 at different initial concentrations of aluminum by weight (from 0 to 100% with a step of 10%) under otherwise equal conditions (air pressure 0,6 MPa, temperature air heating 300 ° C).

The sputtering coefficient of a mixture of copper and aluminum and the residual content of components in the sprayed composite coatings were found. Data on the residual content of the individual components in the sprayed coating allows to determine the composition of the source powder required for spraying a given content of each of the components in the coating.

The dependences of the spraying coefficients of copper C01-11 and aluminum A20-11 on the mass content of aluminum in the sprayed mixture were found. When the initial concentration of aluminum is less than 66%, the coefficient of copper deposition is greater than the coefficient of deposition of aluminum. Both increase with increasing concentration of aluminum until it reaches 61%. At high concentrations of aluminum (more than 66%) the spray coefficients of copper, aluminum and their mixtures coincide. The results obtained on the residual content of the components in the coating allow you to select the composition of the source powder required to obtain the desired content of components in the coating. For example, the maximum residual copper content (~ 95%) can be obtained by adding 30-40% aluminum to the starting powder.

The obtained results prove the influence of the components on each other and justify the amount of introduction of an additional component for spraying a composite coating containing a component that is difficult to spray.


Keywords: cold gas-dynamic spraying, coating, composite coating, copper, aluminum.

List of references

1. Device for gas-dynamic coating with radial flow of powder material: Pat. 110552 Ukraine, IPC6 С23С24 / 00 № а 201405543; claimed 05/23/14; publ. 01/12/16, Bul. №1. 12 sec. [in Ukrainian]

2. Kaletnіk G. M., Chauso M. G., Shvaiko V. M. (2013) Osnovi inzshenernih rozrahunkiv na mitsnist i zshorsnkist  [Fundamentals of engineering methods for technical and practical studies] - Kyiv: “High-Tech Pres”,  [in Ukrainian]

3. Matviychuk V. A., Egorov V. P., Mikhalevich V. M., Pokras V. D (1993) Analiz deformiruemosti menalov pri poverhnostnom uprochnenii detaley. [Analysis of deformability of metals  during surface hardening of parts. Forging and stamping].10, 10-13. [ in Russia].

4. A.P. Alkhimov, S.V. Klinkov, V.F. Kosarev [and others]. (2010) Holodnoe gazodinamicheskoe napilenie. Teoriya I praktika. [Cold gas-dynamic spraying. Theory and practice]  Moscow: Fizmatlit. [ in Russia]. 

5. Gaidamak OL, Savulyak VI (2018) Eksperementalne doslidzshenna prozesu holodnogo gazodinamichnogo nanesenia pokrittia ta metodika rozrahynku yogo rezshimiv/ [Experimental study of the process of cold gas-dynamic coating and methods for calculating its modes]. Bulletin of the Vinnytsia Polytechnic Institute. № 4 (14). 88-94. [in Ukrainian].

6. Cold spray technology / A. Papyrin, V. Kosarev, S. Klinkov [et al.]. – Elsevier Science, 2007. – 336 p. 

7. The cold spray materials deposition process. Fundamentals and applications. – Cambridge: Woodhead Publishing Ltd, 2007. – 362 p. 

8. Maev R., Leshchynsky V. Introduction to low pressure gas dynamic spray: Physics & Technology. – Weinheim: Wiley-VCH, 2008. – 234 p. 

9. Influence of helium and nitrogen gases on the properties of cold gas dynamic sprayed pure titanium coatings / W. Wong, E. Irissou, A.N. Ryabinin [et al.] // J. of Therm. Spray Technol. – 2011. – Vol. 20. – P. 213–226. 

10. Effect of particle morphology and size distribution on coldsprayed pure titanium coatings / W. Wong, P. Vo, E. Irissou, A.N. Ryabinin [et al.] // J. of Therm. Spray Technol. – 2013. – Vol. 22. – P. 1140–1153. 

11. Cold spray deposition of 316L stainless steel coatings on aluminium surface with following laser post-treatment / A. Sova, S. Grigoriev, A. Okunkova [et al.] // Surf. and Coat. Technol. – 2013. – Vol. 235. – P. 283–289. 

12. Influence of impact angle and gas temperature on mechanical properties of titanium cols spray deposits / K. Binder, J. Gottschalk, M. Kollenda [et al.] // J. of Therm. Spray Technol. – 2011. – Vol. 20. – P. 234–242. 

13. Manufacturing and macroscopic properties of cold sprayed Cu-In coating material for sputtering target / Y.-M. Jin, J.-H. Сho, D.-Y. Park  [et al.] // J. of Therm. Spray Technol. – 2011. – Vol. 20. – P. 497–507. 

14. Influence of TGO composition on the thermal shock lifetime of thermal barrier coatings with cold-sprayed MCrAlY bond coat / Y. Li,  Ch.-J. Li, Q. Zhang [et al.] // J. of Therm. Spray Technol. – 2010. – Vol. 19. – P. 168–177. 

15. Cold spray deposition of copper electrodes on silicon and glass substrates / D.-Y. Kim, J.-J. Park, J.-G. Lee [et al.] // J. of Therm. Spray Technol. – 2013. – Vol. 22. – P. 1092–1102. 

16. Metallic coating of aerospace carbon/epoxy composites by the pulsed gas dynamic spraying process / F. Robitaille, M. Yandouzi, S. Hind [et al.] // Surf. and Coat. Technol. – 2009. – Vol. 203. – P. 2954–2960.

17. Preparation of metallic coatings on polymer matrix composites by cold spray / X.I. Zhou, A.F. Chen, J.C. Liu [et al.] // Surf. and Coat. Technol. – 2011. – Vol. 206. – P. 132–136. 

18. Lupoi R., O'Neill W. Deposition of metallic coatings on polimer surfaces using cold spray // Surf. and Coat. Technol. – 2010. – Vol. 205. – P. 2167–2173. 

19. Lupoi R., O'Neill W. Powder stream characteristics in cold spray nozzles // Surf. and Coat. Technol. – 2011. – Vol. 206. – P. 1069–1076. 

20. Cold gas spray titanium coatings onto biocompatible polymer / M. Gardon, A. Latorre, M. Torrell [et al.] // Material Letters. – 2013. – Vol. 106. – P. 97–99. 

21. Cold spray coating: review of material systems and future perspectives / A. Moridi, S.M. Hassani-Gangaraj, M. Guagliano [et al.] // Surf. Eng. – 2014. – Vol. 36, № 6. – P. 369–395. 

22. Champagne V.K., Helfritch D.J. Mainstreaming cold spray – push for applications // Surf. Eng. – 2014. – Vol. 30, № 6. – P. 396–403. 

23. Hassani-Gangaraj S.M., Moridi A., Guagliano M. Critical review of corrosion protection by cold spray coatings // Surf. Eng. – 2015. – Vol. 31, № 11. – P. 803-815. 

24. Application of high-pressure cold spray for an internal bore repair of a navy valve actuator / C.A. Widener, M.J. Carter, O.C. Ozdemir [et al.] // J. Therm. Spray Technol. – 2016. – Vol. 25(1–2). – P. 193–201. 

25.    Klinkov S.V., Kosarev V.F., Sova A.A. (2006). Issledovanie  inzshektornoy shemi formirovfniya geterogennih sverhzvukovih potokov v usloviyah holodnogo gzodinamicheskogo napileniya [Investigation of the ejector scheme for the formation of heterogeneous supersonic flows under conditions of cold gas-dynamic spraying] – Thermophysics and aeromechanics. Vol. 13,  3.  386–397. [in Russia].


All journal issues

About journal

Topics of the journal:

The journal "Vibrations   in engineering  and technology" presents materials on the following issues

• Theory of processes and machines
• Mechanical Engineering and materialprocessing
• Processing and food production

Key information:
ISSN (print): 2306-8744
DOI: 10.37128/2306-8744

The certificateof massmediaState registration:kv no 16643-5115 from 30.04.2010 .
Founder of the journal: Vinnytsia National Agrarian University

Kind of publication: journal
Type of publication : Scientific
Publication status: Domestic
Year of founding:
Periodicity: 4 times a year
Extent: 18.75 nominal printed pages
ISSN: 2306-8744 (printed version), (online)
Language of edition  : (mixed languages) Ukrainian, Russian, English
The scope of the distribution and the category of readers: national, foreign, teaching staff, scientists, businessmen.
Periodical is included in the list of scientific professional editions of Ukraine approved by the Order of Ministry of Education and Sciences of Ukraine from 21.12.2015 No. 1328.
The journal "Vibrations in engineering and technology" is included in the "Catalogue of periodicals of Ukraine".
Journal subscription can be executed in each post office department.
 Subscription Index is  99720.


Old version of site: http://vibrojournal.vsau.edu.ua/

History of journal:

In June 1994 the 2nd International Scientific and Technical Conference "Application of vibrations for technological purposes" was organized on the basis of Vinnytsia State Agricultural Institute. Leading experts in this field, noting the significant contribution to the school of Vibration Engineering under the leadership of P. S. Bernyk, proposed to create a professional all-Ukrainian scientific and technical journal "Vibration in engineering and technology..The journal was foundedat Vinnytsia State Agricultural Institute and P.S. Bernyk was elected to be the chief editor .
For all these years (since 1994) theJournal "vibration in engineering and technology" published  94 issues wherestudy of vibration effects, the creation of progressive energy saving technologies and equipment for their implementation were highlighted.
Currently Kaletnik H.M  PhD , professor, academician NAAS is the chief editor of the "Vibrations in engineering  and Technology"
The journal "Vibration in Engineering and technology", which has no analogues on the territory of Ukraine, is well known abroad.