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A MATHEMATICAL MODEL OF 
AN ELASTIC-DAMPER SYSTEM 
BASED ON THE EXAMPLE OF A 
KELVIN-VOIGT BODY 

 
Mechanical systems that combine structural elements with 

elastic and viscous properties and operate under dynamic and impulse 
loads require accurate mathematical models to predict their oscillatory 
behaviour. The purpose of this study was to develop a mathematical 
model of an elastic-damper system based on the Kelvin-Voigt body, 
aimed at describing viscoelastic material behaviour and analysing the 
influence of stiffness and damping parameters on the dynamic 
response of the system. The research applied analytical methods for 
solving differential equations, analysis of characteristic equations for 
both real and complex roots, as well as algebraic transformations for 
constructing general and particular solutions. As a result, an analytical 
solution was obtained for determining the dynamic response of the 
masses under impulse loading. The proposed model took into account 
variable stiffness, damping, and mass parameters, and distinguishes 
between regimes with real and complex eigenvalues. It was established 
that increasing the damping coefficient reduces amplitude and 
accelerates oscillation decay, while increasing mass extends the decay 
duration. The influence of pulse duration and repetition frequency on the 
oscillation profile was investigated. The simulation results confirmed the 
accuracy of the analytical expressions and enable the modelling of 
transient processes under various conditions. Compared to purely 
numerical approaches, the proposed method provides broader 
opportunities for system analysis and control. The developed model can 
be applied in the study of technical systems with arbitrary configurations 
of elastic-viscous element connections and varying numbers of 
components, making it possible to optimise the design of systems that 
utilise oscillations, vibrations, damping. 

Keywords: two-mass system, differential equations, 
characteristic equation, elasticity, damper. 

  
Introduction. The development of 

mathematical models of mechanical systems that take 
into account elastic-damping properties is a relevant 
direction in applied mechanics, as it enables more 
accurate reproduction of the dynamic behaviour of 
structures and technical objects under real operating 
conditions. Of particular importance are models 
capable of considering the impact of impulse loads, 
which are typical for many engineering tasks – from 
mechanical engineering to automatic control systems. 
The Kelvin-Voigt model, which combines elastic and 
viscous components, is used to analyse the motion of 
bodies where not only the moment of instantaneous 
impact is significant, but also the prolonged response 
of the system. In this context, an important scientific 
task is to study the response of mass-spring systems 
to the action of discrete impulse disturbances with 
variable duration and frequency, which allows the 

modelling of a wide range of dynamic regimes. This 
approach provides a new level of accuracy in the 
design of systems with damping and enables the 
adaptation of model parameters to the conditions of 
cyclic or intermittent loading. 

Mechanical systems that have elements with 
elasticity and viscosity characteristics are extensively 
employed in engineering applications. The connection 
of such elements can be serial, parallel, or combined 
and makes it possible to implement the characteristics 
of a technical system that can perform the functions of 
regulation, oscillation, damping, etc. As demonstrated 
by Huilai et al., the modelling of hydro-pneumatic 
suspensions using fractional calculus provides an 
accurate representation of damping and energy 
dissipation processes, which are essential for 
construction vehicles [1]. Lanets et al. developed an 
analytical model of a two-mass vibration system with 
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eccentric-pendulum excitation, highlighting the 
dynamic advantages of such systems in resonance 
control [2]. The system of differential equations 
expressed in generalised coordinates can be 
transformed into an infinite set of decoupled 
equations, each representing damped oscillatory 
motion of a mechanical oscillator modelled according 
to the Kelvin-Voigt framework incorporating a 
fractional derivative. 

To describe the rheological behaviour of soft 
materials with elastic-viscous characteristics, the 
method of fractional derivatives is used. Bonfanti et al. 
proposed a power-law-based fractional model that 
better reflects the non-linear stress–strain response of 
soft condensed matter, improving prediction accuracy 
in biomedical and materials science applications [3]. 
Modelling and research of vibrations and forced 
oscillations are carried out by the analogy of an 
elastic-damper element for various types of machines 
and equipment. The influence of dampers on the 
forced vibration of high-speed rotating blades is 
studied experimentally and numerically. Authors Wu et 
al. confirmed that under-platform dampers significantly 
reduce amplitude under resonance conditions and 
increase blade life in turbomachinery [4]. For the 
pneumatic suspension, the transfer functions were 
derived from the differential equations, and the 
characteristic was modelled computationally. R. Zhou 
et al. proposed a dynamic simulation approach that 
incorporates nonlinear stiffness characteristics of air 
springs and validated it against experimental data, 
confirming its suitability for vehicle dynamics 
simulation [5]. Also, previously known dependencies 
are used, and the system oscillations are numerically 
modelled – in particular, Leniowski & Wroński 
modelled the vibrations and oscillations of robot 
manipulator links [6]. The parallel connection of elastic 
and viscous elements has become widely used in 
vehicles. Satpute et al. conducted a numerical 
analysis of vibration transmission by a shock absorber 
[7]. They introduced a hybrid energy-harvesting 
system using a linear generator coupled with a motion 
amplification mechanism, which not only improves 
vibration attenuation but also generates electrical 
energy for onboard systems. 

The analytical solution of the system of 
differential equations governing the behaviour of 
elastically and viscously coupled elements in parallel 
is often intractable, thereby requiring the application of 
approximate solution methods. This increases the 
error of the results obtained. The solution of the 
system of differential equations governing the motion 
of masses interconnected by a Kelvin-Voigt body 
represents a pertinent and timely research problem. 
Obtaining an analytical solution to such a system of 
differential equations for a two-mass configuration, 
wherein the external excitation is discrete rather than 
harmonic, enables the analytical optimisation of the 
system’s parameters. 

The aim of the research. The research 
purpose was to develop a mathematical model of an 
elastic-damping system based on the Kelvin-Voigt 
body and to analyse the influence of stiffness and 
damping parameters on the dynamic response of the 
system. 

Materials and Methods. To model the 
dynamic response of the system to impulse excitation, 
a generalised mathematical model of a two-mass 
oscillating system was used, which accounted for the 
visco-elastic properties of the connecting elements 
according to the Kelvin-Voigt model. This approach 
made it possible to describe the behaviour of a 
mechanical system comprising two masses 
connected by elements possessing both elastic and 
damping properties. The model of the Kelvin-Voigt 
body, which is shown in Fig. 1, was considered. 

 
Fig. 1. A parallel connection of elastic and 

damping elements – Kelvin-Voigt body: 
y1, y2 – amplitude of oscillation according to the 
mass m1 and m2; Kspr – the complex coefficient of 
resistance of the damping element; Kpr – the 
coefficient of elasticity of the elastic element; f(t) – 
the characteristic of the oscillation of the applied 
force   
Source: developed by the authors 
 

Two masses m1 and m2 were connected by 
elastic Kpr and damping Kspr elements, which were 
placed parallel to each other. A disturbing force f(t) 
acted on the lower mass m2. Accordingly, the lower 
mass m2 moved to a distance of y2 and the upper 
mass m1 moved to a distance of y1. A system of 
differential equations characterising the action of 
forces on the Kelvin–Voigt body was written down: 

 

(1) 

 
Similarly, the following notations were 

introduced: ,  – the 

square of the frequency of free oscillations, 
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respectively, of the elements by mass of m1 and m2, s-

2; ,  – the coefficient of 

the oscillation dying, s-1;  – specific 

amplitude of force of constrained oscillations, m/s2. 

Then, the set of equations (1) was rewritten as 

follows: 

 

 (2) 

 
Solving this system allowed the determining 

the nature of movements under the action of an 

external disturbing force. Although Euler’s method 

could have been applied, the substitution method was 

used to simplify transformations and calculations. The 

following substitutions were made: 

.    (3) 

The second equation of system (2) was 

subtracted from the first element by element, and 

substitution (3) was applied. As a result, the following 

differential equation was obtained: 

 

(4) 

 
The characteristic equation corresponding to 

differential equation (4) was obtained: 

 

    (5) 

 
The solutions of the characteristic equation 

(5) were calculated as: 

 

 

or    (6) 

  
If the expressions of the solutions (6) of the 

characteristic equation (5) were real, then the 

solution of the differential equation (4) was: 

 

   (7) 

 
The constant of integrations of equation (7) 

were determined, taking into account the 

substitution (3): 

 

  (8) 

    (9) 

 
The constants of integration are given as 

follows: 

               (10) 

 
After inverse transformation and using 

substitution (3), the constants of integration (10) and 

the solution (7) of the differential equation (4), the 

following was obtained: 

 

(11) 

 
The obtained expressions (11) were 

substituted into the differential equations of system 

(2); after transformation and grouping, the 

following was obtained: 

 

 . (12) 

 
Each differential equation in system (12) 

was integrated twice. The constants of integration 

were defined based on the conditions: t = 0, 

,  

 

 , (13) 
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 . (14) 

 
 

The obtained dependences (13) and (14) 

characterise the movement of masses m1 and m2 

under the applied impulse f(t) provided that the 

solutions of the characteristic equation (5) were real 

numbers. The case when the solutions of the 

characteristic equation (5) were complex numbers 

was also considered. In that case, the roots were 

as follows: 

 

              (15) 

 
The homogeneous system of equations (2) 

was solve analytically in the form of , 

, for both the complex roots from 

equation (15) and the real roots from equation (6). 

After substituting into the first equation of system 

(2), the following was obtained: 

 

.(16) 

 
From equation (16), the following was 

taken into account: 

 

       (17) 

 
Considering the values of the roots of the 

characteristic equation, the general solution to the 

homogeneous system of differential equations (2) 

was expressed as follows: 

 

 

(18) 

 

A partial solution satisfying the initial 

conditions: t = 0,  

  

was found. Based on expressions (18), a system of 

algebraic equations was formed: 

 

         (19) 

 
The coefficients in equations (18) were 

determined from the system of equations (19). 

Matrices were formed to calculate the determinants: 

 

         (20) 

 
Then the coefficients of equations (18) were 

determined: 

 

        (21) 

 
The solution of the set of equations (2) was 

as follows: 

 

   

  

  (22) 

) 
The constants of the solutions (22), С0, С1, 

and С2, were determined from the initial 

conditions. Given that at t = 0, 

, the constants 

С0, С1, and С2 were also equal to zero. The results 

of the integration of equations (21) constituted 

their solution: 

 

 (23) 

 
It was supposed that the nature of the 

oscillation of the applied force corresponded to the 
dependence shown in Fig. 2, which was 
analytically described by equation (24): 

      (24) 
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where  – the integer component of a 

number . 

 
 

 
Fig. 2. The nature of the f(t) impulse of 

the applied force: τ – duration of the force 
impulse; Т - impulse period 
Source: developed by the authors based on 
Dmytriv et al. [8] 

 
For the oscillation character of the applied 

force corresponding to the discrete function (24), 
the solution (23) was formulated with consideration 
of the constraints imposed by the analytical form of 
the discrete function (24) representing the applied 
force. Additionally, in equations (22), the variable z 
represented the time interval from 0 to the given 
moment, while t in equations (23) characterised 
the duration of the force acting on the element with 
mass m1; in this case, t = τ. Accordingly, the 
equations describing the motion of the masses 
were expressed as the system (25) and (26), 
where z was replaced by t:  

 

  (25) 

  (26) 

 
 

The obtained system of differential 
equations forms the basis for further numerical 
simulation of the oscillatory process under varying 
impulse excitation conditions. This mathematical 
model enables the analysis of the influence of 
system parameters – such as mass, stiffness, 
damping, and impulse duration – on the dynamic 
behaviour of the two-mass system. The model is 
applied to investigate the system’s response under 
different initial conditions and parameter 
combinations. 

Results and Discussion  
The article details the research results 

related to the Kelvin-Voigt system. The movement 
of masses m1 and m2 was simulated using the 

provided data: masses: m1 = 4000 N and 
m2 = 1000 N; coefficient of damper resistance 
Kspr = 3000 N·s/m; elasticity coefficient Kpr = 50 
kN/m. The square of the frequency of free 
oscillations, respectively, for masses of m1 and m2 
was  and , coefficients of 

damping oscillations, respectively n1 = 0.75 s-1 and 
n2 = 3 s-1. The solution’s roots and the coefficients 
of the equation are presented as follows: λ1 = -
 1.875 – 7.68·i; λ2 = - 1.875 + 7.68·i; A0 = -0.03; 
A1 = 0.015 + 3.668·i·10-3; A2 = 0.015 – 3.668·i·10-

3.  With consideration of the coefficients and roots 
of the z = t and t = τ (Fig. 2), values the (23) 
equations will have a following view: 

 

 (27) 

 
The simulation results of the oscillatory 

behaviour of the Kelvin-Voigt body mass based on 
the previously mentioned parameters with a duration 
of τ = 0.1 s of the pulse of the applied force are 
shown in Fig. 3a. Similarly, mass oscillations were 
modelled using alternative system parameters, and 
the results are presented in Fig. 3b, 3c, 3d. 

The analysis shows that the obtained model 
(25), (26) of the Kelvin-Voigt mass oscillation enables 
modelling in the entire range of real and complex 
roots of the equations. The simulation results 
showed that with a high coefficient of damper 

resistance Kspr ≥ 3000 N·s/m and a low coefficient of 
elasticity Kpr ≤ 50 kN/m and significant masses of m1 
and m2, the oscillations are continuous (Fig. 3a). 
Under the condition of increasing the coefficient of 
elasticity and the resistance coefficient of the 
damper, oscillation amplitude decreases as the 
system exhibits damping (Fig. 3b, 3c, 3d). An 
increase in the mass of the oscillating bodies 
increases their displacement of y1 and y2. 
Accordingly, the oscillation damping time increases. 
Analysis of the study results indicated that the 
oscillation amplitude decreases as the square of the 
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natural oscillation frequency of the mass diminishes. 
An increase in the elasticity coefficient of the elastic 
element results in a higher natural oscillation 
frequency of the masses, thereby enhancing their 
motion. An increase in masses leads to a decrease 
in their movements, the repeatability of oscillations 
increases. The repeatability of the oscillations of 
bodies increases with the increase in the duration of 
the pulse of the mass disturbance force. To model 
the oscillation of the Kelvin-Voigt body masses with 
real values of the roots (5) of the characteristic 
equation (6), solutions (14) and (15) can be taken. 

The Kelvin-Voigt model remains a 
foundational tool for simulating the dynamic 
behaviour of systems with elastic and viscous 
characteristics. Despite its analytical simplicity for 
idealised single-degree-of-freedom systems, the 
extension to multi-mass or non-linear configurations, 

as in the present study, significantly complicates the 
analytical resolution. 

This has led to diverse methodological 
approaches in the literature, combining both 
analytical and numerical strategies, which merit 
detailed comparison. In the work by Jugulkar et al., a 
suspension system with variable stiffness and 
damping was analysed for automotive use [9]. Their 
model, while physically implementable, required 
extensive numerical parametrisation due to the 
complexity of time-dependent boundary conditions. 
Similarly, Madeira & Coda used Kelvin-type visco-
elasticity coupled with Lagrange multipliers to control 
nonlinear vibrations [10]. Unlike the present study, 
they focused on control mechanisms, while our 
research emphasises free oscillation dynamics under 
impulse loading. 

 

 

 

 

 
a) b) 

  
c) d) 

Fig. 3. Results of simulation of the Kelvin-Voigt body mass oscillation based on the system parameters 

Note: a) m1 = 4000 N, m2 = 1000 N, Kspr = 3000 N·s/m, Kpr = 50 kN/m, ,  , 

n1 = 0.75 s-1 and n2 = 3 s-1, λ1 = - 1.875 – 7.68·i, λ2 = - 1.875 + 7.68·i, A0 = -0.03, A1 = 0.015 + 3.668·i·10-

3, A2 = 0.015 - 3.668·i·10-3;  

b) m1 = 4000 N, m2 = 400 N, Kspr = 800 N·s/m, Kpr = 500 N/m, ,  , n1 = 0.2 s-1 

, n2 = 2 s-1, λ1 = - 1.1 – 0.406·i, λ2 = - 1.1 + 0.406·i, A0 = 0.027; A1 = -0.014 - 0.037·i, A2 = -

 0.014 + 0.037·i; 

c) m1 = 4000 N, m2 = 410 N, Kspr = 1800 N·s/m, Kpr = 700 N/m, , , 

n1 = 0.45 s-1 , n2 = 4.39 s-1, λ1 = - 4.414, λ2 = - 0.426, A0 = 1.839·10-3; A1 = 1.967·10-4, A2 = -2.045·10-3; 

d) m1 = 4000 N, m2 = 410 N, Kspr = 4000 N·s/m, Kpr = 4030 N/m, ,  , 

n1 = 1 s-1 , n2 = 9.756 s-1, λ1 = - 9.631, λ2 = - 1.125, A0 = 9.963·10-4; A1 = 1.318·10-4, A2 = -1.128·10-3 

Source: developed by the authors 
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Monsia & Kpomahou addressed nonlinear 
damping in mechanical systems using polynomial 
approximations [11]. Their approach differs 
fundamentally by relying entirely on numerical 
simulations, whereas our method integrates an exact 
analytical solution for both real and complex roots. 
Herisanu et al. offered an analytical solution for 
harmonic excitation in a one-mass Kelvin-Voigt 
model [12]. In contrast, our study introduces impulse-
type forces of variable frequency and duration, which 
are rarely addressed in closed-form. Gomez-Aguilar 
et al. applied Laplace transforms in a fractional-order 
mass-spring-damper model to describe forced 
vibrations [13]. Although useful in frequency domain 
analysis, this technique loses resolution in transient 
impulse loading scenarios, which are central to our 
approach. Hamedi et al. proposed a reduced-order 
Newton iteration scheme in Simulink to optimise 
damper design [14]. Unlike their purely numerical 
strategy, we preserve analytical traceability in model 
construction and solution. 

From the perspective of fractional visco-
elasticity, several authors have extended the 
classical Kelvin-Voigt model by incorporating non-
integer derivatives to capture memory effects and 
nonlocal behaviour of materials. Stankovic & 
Atanackovic  analysed the dynamics of a visco-
elastic rod described by a generalised constitutive 
equation that reflects hereditary material properties 
[15]. Their study highlighted how fractional calculus 
enables modelling of long-term stress relaxation and 
creep phenomena, which are inadequately described 
by conventional integer-order models. Similarly, 
Rossikhin & Shitikova investigated damped 
vibrations in thin elastic structures embedded in a 
fractional derivative visco-elastic medium, 
demonstrating the applicability of such models to 
layered and composite systems [16]. Both studies 
contribute valuable rheological frameworks and 
advance theoretical understanding of fractional-order 
dynamics. However, they are predominantly focused 
on material-level behaviour rather than mass-
interaction systems, and often rely on semi-analytical 
or purely numerical approaches due to the absence 
of tractable closed-form solutions. In contrast, the 
present study offers an exact analytical formulation 
for a two-mass Kelvin–Voigt system subject to 
discrete impulse excitation, providing a rare instance 
where both fractional-like temporal behaviour and 
structural dynamics are captured without recourse to 
full numerical discretisation, which confirms the 
effectiveness of the analytical approach [17]. This 
comparison underscores the utility of the proposed 
model as a middle ground between purely empirical 
damping descriptions and abstract fractional 
formulations. In contrast to the above, current study 
presents a closed-form analytical solution for a two-
mass system with impulse excitation, including real 
and complex eigenvalues. This makes it suitable for 
benchmarking visco-elastic models where control of 

both oscillation amplitude and duration is required. 
Furthermore, Bobyleva & Shamaev discussed 
integral memory effects in damping models, which 
are analogous to our discrete pulse modelling in that 
both represent temporally extended system 
responses [18]. 

A more applied context is seen in Wu et al. 
[4], who experimentally validated damping in turbine 
blades using under-platform dampers. While their 
study focuses on structural integrity, our model 
targets configurational optimisation in mechanical 
system design. Similarly, Zhang et al. [19] studied 
hydropneumatic suspensions with damping 
noncoincidence, introducing system-specific 
damping factors that can also be interpreted through 
our variable parameter analysis. Finally, Dmytriv et 
al. proposed spring-damper models in agricultural 
machines, validating them experimentally [8]. Their 
results support the use of simplified visco-elastic 
analogues for practical control scenarios, a notion 
reinforced by our analytical formulations. In 
summary, while other studies rely heavily on 
numerical simulation or fractional calculus to address 
visco-elastic complexity, the presented work bridges 
this gap by offering a rare analytical solution under 
discrete impulsive loads with varying system 
parameters. 

The two-mass elastic-damper system was 
solved using the Euler method for the roots of the 
characteristic equation with complex numbers. This 
method has no universal solution and no equivalents. 
Unlike previous studies, where the applied 
perturbation force was described in the form of 
harmonic oscillations, here it was proposed a 
solution for the perturbation force in the form of 
discrete single pulses of different durations and 
different arrival frequencies from one pulse to n 
pulses. 

The comparative analysis confirms that 
despite the wide diversity of modelling approaches – 
from purely numerical schemes to fractional visco-
elastic formulations – few studies provide exact 
analytical solutions for systems with discrete impulse 
excitation. The present research fills this 
methodological gap by offering a mathematically 
rigorous and physically interpretable model 
applicable across a wide range of system 
configurations. This solution structure ensures both 
precision and adaptability in the simulation of 
dynamic responses under variable damping and 
stiffness parameters. 

Conclusions. The article presents an 
analytical solution to the system of differential 
equations describing the coupled oscillations of 
masses interconnected by parallel elastic and 
viscous elements. Such a configuration corresponds 
to the classical Kelvin-Voigt model. The analytical 
model enables the simulation of technical systems 
operating on this principle, such as suspensions in 
automobiles and other vehicles designed for various 
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applications. The mathematically derived analytical 
model facilitates the optimisation of suspension 
system designs. Compared to alternative 
mathematical approaches, the analytical solution of 
the system of differential equations describing the 
motion of the system’s masses allows for 
comprehensive analysis across a broad spectrum of 
structural parameter values. 

In prior studies, the applied disturbance 
force was characterised by harmonic oscillations. In 
contrast, we propose a solution that models the 
disturbance input as discrete single pulses of varying 
durations and repetition frequencies, ranging from a 
single pulse to multiple pulses (up to n). 

The movement of masses m1 and m2 was 
simulated based on the given data: masses: 
m1 = 4000 N and m2 = 1000 N; coefficient of damper 
resistance Kspr = 3000 N·s/m; elasticity coefficient 
Kpr = 50 kN/m. The square of the frequency of free 
oscillations, respectively, for masses of m1 and m2 
was  and , coefficients of 

damping oscillations, respectively n1 = 0.75 s-1 and 
n2 = 3 s-1. The roots of the solution and coefficients of 
the equation are as follows: λ1 = - 1.875 – 7.68·i; 
λ2 = - 1.875 + 7.68·i; A0 = -0.03; 
A1 = 0.015 + 3.668·i·10-3; A2 = 0.015 – 3.668·i·10-3. 
An increase in the coefficient of elasticity of the 
elastic element leads to an increase in the frequency 
of natural oscillations of the masses, which increases 
the displacement of these masses. An increase in 
masses leads to a decrease in their displacements, 
the repeatability of oscillations increases. The 
repeatability of the oscillations of bodies increases 
with the increase in the duration of the pulse of the 
mass disturbance force. 

Further studies of this problem should be 
focused on a wider configuration of the combination 
of different bodies and their different number, which 
will make it possible to optimise the designs of 
technical systems that use oscillations, vibrations, 
damping, and creep. This will allow interested person 
to manage these processes accordingly. 
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МАТЕМАТИЧНА МОДЕЛЬ ПРУЖНО-

ДЕМПФЕРНОЇ СИСТЕМИ НА ПРИКЛАДІ ТІЛА 
КЕЛЬВІНА-ФОЙГТА 

 
Механічні системи, які поєднують 

конструктивні елементи з пружними та 
в’язкими характеристиками та працюють в 
умовах динамічних та імпульсних навантажень, 
потребують точних математичних моделей 

для прогнозування їх коливальної поведінки. 
Метою дослідження було розроблення 
математичної моделі пружно-демпферної 
системи на основі тіла Кельвіна-Фойгта для 
опису в’язкопружної поведінки матеріалу та 
аналізу впливу параметрів жорсткості й 
демпфування на динамічну відповідь системи. У 
роботі використано аналітичні методи 
розв’язування диференціальних рівнянь, аналіз 
характеристичних рівнянь для дійсних і 
комплексних коренів, а також алгебраїчні 
перетворення для побудови загального та 
частинного розв’язків. В результаті досліджень 
отримано аналітичний розв’язок задачі 
визначення динамічної реакції мас при 
імпульсному навантаженні. Запропонована 
модель враховувала змінні параметри 
жорсткості, демпфування та мас, а також 
розрізняє режими з дійсними та комплексними 
власними значеннями. Встановлено, що 
підвищення коефіцієнта демпфування зменшує 
амплітуду та прискорює згасання коливань, 
тоді як збільшення маси продовжує час 
згасання. Досліджено вплив тривалості 
імпульсу та частоти його повторення на 
форму коливального процесу. Результати 
моделювання підтверджують точність 
аналітичних залежностей і дозволяють 
змоделювати перехідні процеси за різних умов. У 
порівнянні з числовими підходами, 
запропонований метод надав ширші можливості 
для аналізу та контролю систем. Розроблена 
модель може бути застосована при дослідженні 
технічних систем з довільною конфігурацією 
з’єднання пружно-в’язких тіл та їх кількістю, що 
дозволить оптимізувати проектування 
технічних систем, що використовують 
коливання, вібрації, демпфування. 

Ключові слова: двомасова система, 
диференціальні рівняння, характеристичне 
рівняння, коефіцієнт пружності, демпфер. 
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