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A MATHEMATICAL MODEL OF
AN ELASTIC-DAMPER SYSTEM
BASED ON THE EXAMPLE OF A
KELVIN-VOIGT BODY

Mechanical systems that combine structural elements with
elastic and viscous properties and operate under dynamic and impulse
loads require accurate mathematical models to predict their oscillatory
behaviour. The purpose of this study was to develop a mathematical
model of an elastic-damper system based on the Kelvin-Voigt body,
aimed at describing viscoelastic material behaviour and analysing the
influence of stiffness and damping parameters on the dynamic
response of the system. The research applied analytical methods for
solving differential equations, analysis of characteristic equations for
both real and complex roots, as well as algebraic transformations for
constructing general and particular solutions. As a result, an analytical
solution was obtained for determining the dynamic response of the
masses under impulse loading. The proposed model took into account
variable stiffness, damping, and mass parameters, and distinguishes
between regimes with real and complex eigenvalues. It was established
that increasing the damping coefficient reduces amplitude and
accelerates oscillation decay, while increasing mass extends the decay
duration. The influence of pulse duration and repetition frequency on the
oscillation profile was investigated. The simulation results confirmed the
accuracy of the analytical expressions and enable the modelling of
transient processes under various conditions. Compared to purely
numerical approaches, the proposed method provides broader
opportunities for system analysis and control. The developed model can
be applied in the study of technical systems with arbitrary configurations
of elastic-viscous element connections and varying numbers of
components, making it possible to optimise the design of systems that
utilise oscillations, vibrations, damping.

Keywords: two-mass system,
characteristic equation, elasticity, damper.

differential  equations,

modelling of a wide range of dynamic regimes. This

mathematical models of mechanical systems that take
into account elastic-damping properties is a relevant
direction in applied mechanics, as it enables more
accurate reproduction of the dynamic behaviour of
structures and technical objects under real operating
conditions. Of particular importance are models
capable of considering the impact of impulse loads,
which are typical for many engineering tasks — from
mechanical engineering to automatic control systems.
The Kelvin-Voigt model, which combines elastic and
viscous components, is used to analyse the motion of
bodies where not only the moment of instantaneous
impact is significant, but also the prolonged response
of the system. In this context, an important scientific
task is to study the response of mass-spring systems
to the action of discrete impulse disturbances with
variable duration and frequency, which allows the
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approach provides a new level of accuracy in the
design of systems with damping and enables the
adaptation of model parameters to the conditions of
cyclic or intermittent loading.

Mechanical systems that have elements with
elasticity and viscosity characteristics are extensively
employed in engineering applications. The connection
of such elements can be serial, parallel, or combined
and makes it possible to implement the characteristics
of a technical system that can perform the functions of
regulation, oscillation, damping, etc. As demonstrated
by Huilai et al., the modelling of hydro-pneumatic
suspensions using fractional calculus provides an
accurate representation of damping and energy
dissipation processes, which are essential for
construction vehicles [1]. Lanets et al. developed an
analytical model of a two-mass vibration system with
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eccentric-pendulum  excitation, highlighting  the
dynamic advantages of such systems in resonance
control [2]. The system of differential equations
expressed in generalised coordinates can be
transformed into an infinite set of decoupled
equations, each representing damped oscillatory
motion of a mechanical oscillator modelled according
to the Kelvin-Voigt framework incorporating a
fractional derivative.

To describe the rheological behaviour of soft
materials with elastic-viscous characteristics, the
method of fractional derivatives is used. Bonfanti et al.
proposed a power-law-based fractional model that
better reflects the non-linear stress—strain response of
soft condensed matter, improving prediction accuracy
in biomedical and materials science applications [3].
Modelling and research of vibrations and forced
oscillations are carried out by the analogy of an
elastic-damper element for various types of machines
and equipment. The influence of dampers on the
forced vibration of high-speed rotating blades is
studied experimentally and numerically. Authors Wu et
al. confirmed that under-platform dampers significantly
reduce amplitude under resonance conditions and
increase blade life in turbomachinery [4]. For the
pheumatic suspension, the transfer functions were
derived from the differential equations, and the
characteristic was modelled computationally. R. Zhou
et al. proposed a dynamic simulation approach that
incorporates nonlinear stiffness characteristics of air
springs and validated it against experimental data,
confirming its suitability for vehicle dynamics
simulation [5]. Also, previously known dependencies
are used, and the system oscillations are numerically
modelled — in particular, Leniowski & Wronski
modelled the vibrations and oscillations of robot
manipulator links [6]. The parallel connection of elastic
and viscous elements has become widely used in
vehicles. Satpute et al. conducted a numerical
analysis of vibration transmission by a shock absorber
[7]. They introduced a hybrid energy-harvesting
system using a linear generator coupled with a motion
amplification mechanism, which not only improves
vibration attenuation but also generates electrical
energy for onboard systems.

The analytical solution of the system of
differential equations governing the behaviour of
elastically and viscously coupled elements in parallel
is often intractable, thereby requiring the application of
approximate solution methods. This increases the
error of the results obtained. The solution of the
system of differential equations governing the motion
of masses interconnected by a Kelvin-Voigt body
represents a pertinent and timely research problem.
Obtaining an analytical solution to such a system of
differential equations for a two-mass configuration,
wherein the external excitation is discrete rather than
harmonic, enables the analytical optimisation of the
system’s parameters.
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The aim of the research. The research
purpose was to develop a mathematical model of an
elastic-damping system based on the Kelvin-Voigt
body and to analyse the influence of stiffness and
damping parameters on the dynamic response of the
system.

Materials and Methods. To model the
dynamic response of the system to impulse excitation,
a generalised mathematical model of a two-mass
oscillating system was used, which accounted for the
visco-elastic properties of the connecting elements
according to the Kelvin-Voigt model. This approach
made it possible to describe the behaviour of a
mechanical system comprising two masses
connected by elements possessing both elastic and
damping properties. The model of the Kelvin-Voigt
body, which is shown in Fig. 1, was considered.

k.

1 | ¥
[
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Fig. 1. A parallel connection of elastic and
damping elements — Kelvin-Voigt body:
y1, Y2—amplitude of oscillation according to the
mass m; and my; Kspr — the complex coefficient of
resistance of the damping element; Kpr — the
coefficient of elasticity of the elastic element; f(t) —
the characteristic of the oscillation of the applied
force
Source: developed by the authors

Two masses m: and m2 were connected by
elastic Ky and damping Ksyr elements, which were
placed parallel to each other. A disturbing force f(t)
acted on the lower mass ma. Accordingly, the lower
mass mz moved to a distance of y2 and the upper
mass mi: moved to a distance of yi1. A system of
differential equations characterising the action of
forces on the Kelvin—Voigt body was written down:

&y . dyy _@nY),
ml'?2'+f‘3ﬂr'(d_rl_?)*'ﬁpr"bl—)’:] =0
dy: . dy, _dya\ _ D)
Ui '?:-_:‘spr '(?_d_r-]_;‘pr' {.TJ. _JE] = f(t)
Similarly, the following notations were
introduced: K; =K, /m,, K: = K,./m, — the

square of the frequency of free oscillations,



Ne 2 (117) Bibpauii 8 mexHiui
ma mexHoJsio2isix

2025
respectively, of the elements by mass of m1 and mz, s Y- =y, — % = f — v =i (3)
%y, = Kg/my, n, = K,./m. — the coefficient of The second equation of system (2) was
the oscillation dying, s%; h, = 1/m,—specific subtracted from the first element by element, and

amplitude of force of constrained oscillations, m/s2.  substitution (3) was applied. As a result, the following
Then, the set of equations (1) was rewritten as differential equation was obtained:

follows:
fi+d-0n, +n) +u-(Kf +K3) =—h, - flt).(4)

d? dy dyz -
{I+ L (JI_L)"‘KI'{_TL_ '"]:U

dt (2 The characteristic equation corresponding to
‘ZTJ . {%_ L ) K2 -(y, —v) =hs  f(2) differential equation (4) was obtained:

Solving this system allowed the determining A+ ae(ng +m) + (K +K2) =0 (5)

the nature of movements under the action of an
external disturbing force. Although Euler's method
could have been applied, the substitution method was
used to simplify transformations and calculations. The
following substitutions were made:

The solutions of the characteristic equation
(5) were calculated as:

n, +n. . VO + 107 — 4 (K2 +K2)

al 2 - 2
or P Eupr [ +1my) . \;EI:;{\'P" P lmy +m, 12— 4By (g +my Jomy m;
L2 :'ﬂ'q'ﬂ'.: - :'ﬂ'q'ﬂ'.:
If the expressions of the solutions (6) of the C, = floem, 4y
characteristic equation (5) were real, then the Hprima +my ) Az ‘AA' (10)
solution of the differential equation (4) was: C,=-——™ A4
- Epr-lmg+my) Az-4
u=C el 4, el r+n—m e ACO N C) After inverse transformation and using

substitution (3), the constants of integration (10) and
The constant of integrations of equation (7) the solution (7) of the differential equation (4), the
were determined, taking into account the following was obtained:
substitution (3):

J'L_J'::f(f]'#(l_ ety '“+1]
w-—m=0 Ty C. . etz Ty m f{t] ©) pr Ly & '(11)
¥r—¥=0C -4, et T+C A, 9) ¥, -y, = f8) my -ﬁ.{elrf_eﬂ.:-r}l

The constants of integration are given as ] )
The obtained expressions (11) were

substituted into the differential equations of system
(2); after transformation and grouping, the
following was obtained:

follows:

20 0 (B b () - 2i) )

iy ] Popr 244 2741
E_ Fltl-m Py .‘1 11: A, - _ . 1 T _ 2 i g
de? _i"i:'i“il*’i’l‘i:'(;rl:u_- Ta-1, {E g——— 11, {ﬂ:e‘llf ﬂle‘l f}+l)+ .

Each differential equation in system (12) were defined based on the conditions: t=0,
was integrated twice. The constants of integration y, =y =0,%, =y, =0

(t) (Ko 4,4, feMT ghTy 1 [i, A Vot K
f ( spr 1 _( 3 - : (__:Ejl.[__:.elz.r]_l___ C:LA
A An S A — A E

my + m, 2 Kpr
Az+dy Bepr Ao+d;  AB+14;+4
— E—— I — 1
+ Az A FLE R (13)

¥y = f@&)-m, Kopr Aivds EAIT—EA:TJ+ ! :EA. _AL Azt )+
T my e my +m )\ Ky A, -4\ A3 ) A, -a\8 FEN
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(6)
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The obtained dependences (13) and (14)
characterise the movement of masses m: and mz
under the applied impulse f(t) provided that the
solutions of the characteristic equation (5) were real
numbers. The case when the solutions of the
characteristic equation (5) were complex numbers
was also considered. In that case, the roots were
as follows:

Ai=atf-i (15)

The homogeneous system of equations (2)
was solve analytically in the form of y, = 4. ¢,
y, = B+ &', for both the complex roots from
equation (15) and the real roots from equation (6).
After substituting into the first equation of system
(2), the following was obtained:

et (4 (40 24K -B-(n, -1+ K2))=0.(16)

From equation (16), the following was

taken into account:
B=A-(A*+n, - A+K))/n, - A+ K} (17)
Considering the values of the roots of the
characteristic equation, the general solution to the

homogeneous system of differential equations (2)
was expressed as follows:

Vio = AptA; et T+ A,y e
gty .2 ht (1g)

ny-dy+ET nyda +ET

Yoo = Yip +Ap-

w8 = Gty et T4 €

.1:
_‘,I':{t:] = E|}+ CL' (J- +—I-

nydy +ET

+h, - _rl:_j‘:n':t —z) - flz) -dz.

)

The constants of the solutions (22), Co, Ca,
and C;, were determined from the initial
conditions. Given that at t=0,

v, (0) = %,(0) = y,(0) = %,(0) = 0, the constants

Az +4y
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Bopr dp+dy B+aA,+13
TRy A 22 ) (14)
A partial solution satisfying the initial

conditions: t =0,

¥1p(0) = 0.55(0) = 0,355 (0) = 0,y (0) = 1
was found. Based on expressions (18), a system of
algebraic equations was formed:

Ay +A; + 4, =0
AypAp+4,-4,=0
i RE]

ny-dy+K] At i’!.-.l:-+;c|3 Ay =0 (19)
43 B L
mydy+ BT At My AatKD Ay =1

The coefficients in equations (18) were
determined from the system of equations (19).
Matrices were formed to calculate the determinants:

A, 1.
A :( 4 3 ) .
My -.1|+}-:|: r!,-.l:+}:|:
Al =1 A3 .
1 Ay da+E

( ‘1]- U)
A2 = 4 G
i’!|'.|1|+f1:|: l

Then the coefficients of equations (18) were
determined:

(20)

AL Az
A =T A=T. (D)

The solution of the set of equations (2) was
as follows:

el L, - fDrJ'LD {t —z) - flz) -dz
]- et L, (1 +‘1—] celat g

ny da+Ey

(22)

Co, C1, and C2 were also equal to zero. The results
of the integration of equations (21) constituted
their solution:

@ =hy [yt —2)  F&) dz=hy (A z -2 g2 & ghal-a))

3o = 7@ — - (4, - 2

My '.|1| +R|:

It was supposed that the nature of the
oscillation of the applied force corresponded to the
dependence shown in Fig. 2, which was
analytically described by equation (24):

Ay EE]

(23)
. gdyit-z) T S P -0
e +H: i’!|'.|1:+f1:|: & )
_ ILn-T=t=n-T+1
J{Em_{U-n-lf'+r-=:r--a:{zf1+1j|-1r" (24)
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where n =[z/T] — the integer component of a
number =/T. For the oscillation character of the applied
force corresponding to the discrete function (24),
the solution (23) was formulated with consideration
A At of the constraints imposed by the analytical form of
the discrete function (24) representing the applied
T force. Additionally, in equations (22), the variable z
represented the time interval from 0 to the given
moment, while t in equations (23) characterised
0 - the duration of the force acting on the element with
T ! mass my; in this case, t = 1. Accordingly, the
1 equations describing the motion of the masses
Fig. 2. The nature of the f(t) impulse of were expressed as the system (25) and (26),
the applied force: r — duration of the force where z was replaced by t:
impulse; T -impulse period
Source: developed by the authors based on
Dmytriv et al. [8]

(8 = { @) =y, T + 2y, T + D =y, T )T =t =nT +1 5)
. (T + 0 -y GI) T+t =t <+ 1T '
L (1) = {:": 2 — G + 20T +0) — @I )T <t =nT 41 5)
PETL Bn6r 40 - 6D aT #r<t <4 DT

The obtained system of differential provided data: masses: mi1=4000N and
equations forms the basis for further numerical mz= 1000 N; coefficient of damper resistance
simulation of the oscillatory process under varying  Kspr = 3000 N-s/m; elasticity coefficient Kp =50
impulse excitation conditions. This mathematical kN/m. The square of the frequency of free
model enables the analysis of the influence of oscillations, respectively, for masses of m: and m2
system parameters — such as mass, stiffness, was K =12.5s577and K7 = 30 5=, coefficients of
damping, and impulse duration — on the dynamic  damping oscillations, respectively n1 = 0.75 s and
behaviour of the two-mass system. The model is n2 =3 s1. The solution’s roots and the coefficients
applied to investigate the system’s response under  of the equation are presented as follows: A1= -
different  initial conditions and parameter 1.875-7.68-i; A2=-1.875+7.68i; Ao=-0.03;
combinations. A1 =0.015 + 3.668i-10%; A2 =0.015- 3.668-i-10-

Results and Discussion 3. With consideration of the coefficients and roots

The article details the research results of the z=t and t=r (Fig.2), values the (23)
related to the Kelvin-Voigt system. The movement  equations will have a following view:
of masses mi1 and mz was simulated using the

(0001543668205 [_) goe _= eniie(oest]
1'1'&]:1(—0. It — . gl-1a7a-Togi)-(r-g) _
; (-1.875-7.68])

_ (0,015 -2.668i-10 =% __(-1e75+7.680 ...T_r.)
(- LB75+7.68i)

(27)

1—1.875 -7.681)

() =y () -1 ({u.mﬁ +3.668: 1070 -

7al—-14875-7.681)+12.5

(—1.875- 768 -[r— 1) = . -3 \—1.875 +7.681) . ol-La7se7.6E)-(r-0)
xe + (0015 - 3.668i - 107) x —— = — . )

The simulation results of the oscillatory resistance Ksr =2 3000 N-s/m and a low coefficient of
behaviour of the Kelvin-Voigt body mass based on elasticity Kpr < 50 kN/m and significant masses of my
the previously mentioned parameters with a duration and mgz, the oscillations are continuous (Fig. 3a).
of T = 0.1 s of the pulse of the applied force are  Under the condition of increasing the coefficient of
shown in Fig. 3a. Similarly, mass oscillations were elasticity and the resistance coefficient of the
modelled using alternative system parameters, and damper, oscillation amplitude decreases as the
the results are presented in Fig. 3b, 3c, 3d. system exhibits damping (Fig. 3b, 3c, 3d). An

The analysis shows that the obtained model increase in the mass of the oscillating bodies
(25), (26) of the Kelvin-Voigt mass oscillation enables  increases their displacement of yi1 and vy
modelling in the entire range of real and complex Accordingly, the oscillation damping time increases.
roots of the equations. The simulation results Analysis of the study results indicated that the
showed that with a high coefficient of damper oscillation amplitude decreases as the square of the
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natural oscillation frequency of the mass diminishes.
An increase in the elasticity coefficient of the elastic
element results in a higher natural oscillation
frequency of the masses, thereby enhancing their
motion. An increase in masses leads to a decrease
in their movements, the repeatability of oscillations
increases. The repeatability of the oscillations of
bodies increases with the increase in the duration of
the pulse of the mass disturbance force. To model
the oscillation of the Kelvin-Voigt body masses with
real values of the roots (5) of the characteristic
equation (6), solutions (14) and (15) can be taken.
The Kelvin-Voigt model remains a
foundational tool for simulating the dynamic
behaviour of systems with elastic and viscous
characteristics. Despite its analytical simplicity for
idealised single-degree-of-freedom systems, the
extension to multi-mass or non-linear configurations,

=
)
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as in the present study, significantly complicates the
analytical resolution.

This has led to diverse methodological
approaches in the literature, combining both
analytical and numerical strategies, which merit
detailed comparison. In the work by Jugulkar et al., a
suspension system with variable stiffnress and
damping was analysed for automotive use [9]. Their
model, while physically implementable, required
extensive numerical parametrisation due to the
complexity of time-dependent boundary conditions.
Similarly, Madeira & Coda used Kelvin-type visco-
elasticity coupled with Lagrange multipliers to control
nonlinear vibrations [10]. Unlike the present study,
they focused on control mechanisms, while our
research emphasises free oscillation dynamics under
impulse loading.

y(t), m
= yit) /\ 0.2
X \.\/ W
y:('fJ \
0.2 \ 0.0
-04
’ -0.2
0.6 \\ N
0 05 1.0 L5 t.s ) 0.5 1.0 1.5 LS
a) b)
g vit), m

v({f), m ‘

0.1

0.0

0.1

0 05

Y

0.004

0,002
vilt)
h

0.0

0,002

d)

Fig. 3. Results of simulation of the Kelvin-Voigt body mass oscillation based on the system parameters
Note: a) m1= 4000 N, mz2 = 1000 N, Kspr = 3000 N-s/m, Kpr = 50 KN/m, KT =12.5357%, K7 = 30577,
n=0.75stand n2=3s?, At=-1.875-7.68-i, A2=- 1.875 + 7.68-i, Ao = -0.03, A1 = 0.015 + 3.668i-10-

3, A2=0.015 - 3.668-i-103;

b) m1= 4000 N, mz2 = 400 N, Kspr = 800 N-s/m, Kpr = 500 N/m, Kf =0.125s57, K7 =

1.2557%, n1=0.2s1

,N2=2s1 A1=-1.1-0.406i, A2=- 1.1 + 0.406-i, Ao = 0.027; A1 =-0.014 - 0.037"i, Az = -

0.014 + 0.037-i;

c) m1= 4000 N, m2 =410 N, Kspr = 1800 N-s/m, Kpr = 700 N/m, K7 = 0.173 57, K7 = 1.707 579,
ni=045s?,n2=439s A1=-4.414, A2=- 0.426, Ao = 1.839:10°3; A1 = 1.967-10%, A2 =-2.045-103;

d) mi=4000N, m2=410N, Kspr=4000 N-s/m, Kpr=4030N/m, Ki =1.008s77,

K: = 9820572,

n=1s?t,n2=9756s? A1=-9.631, A2=-1.125, Ao = 9.963-10%; A1 = 1.318-104, A2 =-1.128-10¢

Source: developed by the authors
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Monsia & Kpomahou addressed nonlinear
damping in mechanical systems using polynomial
approximations  [11]. Their approach differs
fundamentally by relying entirely on numerical
simulations, whereas our method integrates an exact
analytical solution for both real and complex roots.
Herisanu et al. offered an analytical solution for
harmonic excitation in a one-mass Kelvin-Voigt
model [12]. In contrast, our study introduces impulse-
type forces of variable frequency and duration, which
are rarely addressed in closed-form. Gomez-Aguilar
et al. applied Laplace transforms in a fractional-order
mass-spring-damper model to describe forced
vibrations [13]. Although useful in frequency domain
analysis, this technique loses resolution in transient
impulse loading scenarios, which are central to our
approach. Hamedi et al. proposed a reduced-order
Newton iteration scheme in Simulink to optimise
damper design [14]. Unlike their purely numerical
strategy, we preserve analytical traceability in model
construction and solution.

From the perspective of fractional visco-
elasticity, several authors have extended the
classical Kelvin-Voigt model by incorporating non-
integer derivatives to capture memory effects and
nonlocal behaviour of materials. Stankovic &
Atanackovic analysed the dynamics of a visco-
elastic rod described by a generalised constitutive
equation that reflects hereditary material properties
[15]. Their study highlighted how fractional calculus
enables modelling of long-term stress relaxation and
creep phenomena, which are inadequately described
by conventional integer-order models. Similarly,
Rossikhin & Shitikova investigated damped
vibrations in thin elastic structures embedded in a
fractional derivative visco-elastic medium,
demonstrating the applicability of such models to
layered and composite systems [16]. Both studies
contribute valuable rheological frameworks and
advance theoretical understanding of fractional-order
dynamics. However, they are predominantly focused
on material-level behaviour rather than mass-
interaction systems, and often rely on semi-analytical
or purely numerical approaches due to the absence
of tractable closed-form solutions. In contrast, the
present study offers an exact analytical formulation
for a two-mass Kelvin—Voigt system subject to
discrete impulse excitation, providing a rare instance
where both fractional-like temporal behaviour and
structural dynamics are captured without recourse to
full numerical discretisation, which confirms the
effectiveness of the analytical approach [17]. This
comparison underscores the utility of the proposed
model as a middle ground between purely empirical
damping descriptions and abstract fractional
formulations. In contrast to the above, current study
presents a closed-form analytical solution for a two-
mass system with impulse excitation, including real
and complex eigenvalues. This makes it suitable for
benchmarking visco-elastic models where control of
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both oscillation amplitude and duration is required.
Furthermore, Bobyleva & Shamaev discussed
integral memory effects in damping models, which
are analogous to our discrete pulse modelling in that
both represent temporally extended system
responses [18].

A more applied context is seen in Wu et al.
[4], who experimentally validated damping in turbine
blades using under-platform dampers. While their
study focuses on structural integrity, our model
targets configurational optimisation in mechanical
system design. Similarly, Zhang et al. [19] studied
hydropneumatic ~ suspensions  with  damping
noncoincidence, introducing system-specific
damping factors that can also be interpreted through
our variable parameter analysis. Finally, Dmytriv et
al. proposed spring-damper models in agricultural
machines, validating them experimentally [8]. Their
results support the use of simplified visco-elastic
analogues for practical control scenarios, a notion
reinforced by our analytical formulations. In
summary, while other studies rely heavily on
numerical simulation or fractional calculus to address
visco-elastic complexity, the presented work bridges
this gap by offering a rare analytical solution under
discrete impulsive loads with varying system
parameters.

The two-mass elastic-damper system was
solved using the Euler method for the roots of the
characteristic equation with complex numbers. This
method has no universal solution and no equivalents.
Unlike previous studies, where the applied
perturbation force was described in the form of
harmonic oscillations, here it was proposed a
solution for the perturbation force in the form of
discrete single pulses of different durations and
different arrival frequencies from one pulse to n
pulses.

The comparative analysis confirms that
despite the wide diversity of modelling approaches —
from purely numerical schemes to fractional visco-
elastic formulations — few studies provide exact
analytical solutions for systems with discrete impulse
excitation. The present research fills this
methodological gap by offering a mathematically
rigorous and physically interpretable model
applicable across a wide range of system
configurations. This solution structure ensures both
precision and adaptability in the simulation of
dynamic responses under variable damping and
stiffness parameters.

Conclusions. The article presents an
analytical solution to the system of differential
equations describing the coupled oscillations of
masses interconnected by parallel elastic and
viscous elements. Such a configuration corresponds
to the classical Kelvin-Voigt model. The analytical
model enables the simulation of technical systems
operating on this principle, such as suspensions in
automobiles and other vehicles designed for various
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applications. The mathematically derived analytical
model facilitates the optimisation of suspension
system designs. Compared to alternative
mathematical approaches, the analytical solution of
the system of differential equations describing the
motion of the system’s masses allows for
comprehensive analysis across a broad spectrum of
structural parameter values.

In prior studies, the applied disturbance
force was characterised by harmonic oscillations. In
contrast, we propose a solution that models the
disturbance input as discrete single pulses of varying
durations and repetition frequencies, ranging from a
single pulse to multiple pulses (up to n).

The movement of masses m1 and mz was
simulated based on the given data: masses:
m1= 4000 N and m2 = 1000 N; coefficient of damper
resistance Kspr = 3000 N-s/m; elasticity coefficient
Kor = 50 kN/m. The square of the frequency of free
oscillations, respectively, for masses of mi1 and m:
was K = 12.5s7% and K2 = 50 ™%, coefficients of
damping oscillations, respectively n1=0.75s? and
nz = 3 st. The roots of the solution and coefficients of
the equation are as follows: Ai1=-1.875-7.68";
A2=-1.875 + 7.68i; Ao =-0.03;
A1 =0.015+ 3.668:i-103; A2=0.015-3.668:i-103.
An increase in the coefficient of elasticity of the
elastic element leads to an increase in the frequency
of natural oscillations of the masses, which increases
the displacement of these masses. An increase in
masses leads to a decrease in their displacements,
the repeatability of oscillations increases. The
repeatability of the oscillations of bodies increases
with the increase in the duration of the pulse of the
mass disturbance force.

Further studies of this problem should be
focused on a wider configuration of the combination
of different bodies and their different number, which
will make it possible to optimise the designs of
technical systems that use oscillations, vibrations,
damping, and creep. This will allow interested person
to manage these processes accordingly.
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MATEMATUYHA MOJEIb NPY>XHO-
OEMN®EPHOI CUCTEMU HA NPUKNALI TINA
KENbBIHA-®OUITA

MexaHidHi  cucmemu,  SKi  MOEGHYHOMb
KOHCMPYKMUBHI  efleMeHmu 3 MPpyXHUMU ma
8’93KUMU Xapakmepucmukamu ma rpauytoroms 8
ymogax QUHaMIYHUX ma iMryIbCHUX HagaHMaKeHb,
nompebytomb MOYHUX MamemamuyHux modesneu

ma mexHorsoegissx

2025
Ol PO2HO3yB8aHHs1 iX KonueasibHOI  MoeediHKU.
Memotro QocnidxXeHHs b6yno  po3pobrieHHs
Mamemamu4Hoi  Modeni  npyXHO-OemrghepHOi

cucmemu Ha ocHosi mina KenbeiHa-®olzma 0ns
onucy 8’a3KornpyHoi noeediHku Mamepiany ma
aHanisy ennuey rnapamempie >opcmkocmi U
OemrighyeaHHSI Ha OuHaMi4Hy 8idnoesidb cucmemu. Y
pobomi  eukopucmaHo  aHanimuyHi  Memodu
p038’s13y8aHHs1 OughepeHujanbHUX pPIieHSIHb, aHarsli3
XapakmepucmuyHUxX  pieHsHb  Ons QiticHux i
KOMIJIEKCHUX KOPEHi8, a maKkox asnzebpaidHi
rnepemeopeHHs1 0nsi nobydosu 3azasibHO20 Mma
YacmuHHO20 po3e’sa3kie. B pesynbmami 0ocrioxeHb
ompumaHo  aHanimu4Huli  po38’a30K  3adaui
8U3Ha4YeHHs1 ~ OuHaMiyHOi  peakuii  mac  rpu
iMrynibCHOMY ~ HasaHmaxkeHHi.  3arporioHosaHa
moderib g8paxosysarna 3MiHHI  napamempu
Xxopcmkocmi, OemrighyeaHHI ma Mac, a MmaKoX
PO3pi3HsIe pexumu 3 OitICHUMU ma KOMIIEKCHUMU
enacHUMU  3HavyeHHsMu.  BcmanoeneHo, w0
nidsuweHHs1 KoegbiyieHma Oemrighy8aHHs 3MEHUWIYE
amnimydy ma [pUCKOPIOE 32acaHHs1 KoJlueaHb,
modi sk 306inbWweHHs Macu podoeXye 4ac
3eacaHHs.  [ocnidxeHo  ennue  mpusanocmi
iMrynbcy ma 4yacmomu (020 [108MOPEHHS Ha
¢opmy  KonueanbHoO20 rpouecy. Pesynbmamu

Modeso8aHHs niomeepdxxyoms MmoyHicmb
aHanimuyHux  3anexHocmel | 00380550Mb
3modenogamu nepexioHi npoyecu 3a pisHux ymos. Y
MOPIGHSIHHI 3 yucrnosumu nidxo0amu,

3arporoHosaHull Memod Hadas Wupwi MoXxusocmi
Ons aHanizy ma KOHmposo cucmem. PospobrieHa
MoQerb Moxe 6ymu 3acmocogaHa rpu OoCTiOKeHHI
MmexHIYHUX cucmeM 3 OO08ifTbHOK KOHi2ypaujieto
3’'€OHaHHS NPYXXHO-8’A3KUX Min ma ix KirbKicmio, wo
dosgonums onmumizyeamu rPOEKMy8aHHs1
MexHiYHUX  cucmeM, WO  BUKOPUCMO8YHOMb
KonuearHsi, sibpauii, demrichysaHHs.

Knroyoei cnoea: dsomacosa cucmema,
OugbepeHuianbHi  PIBHSIHHS,  Xapakmepucmu4yHe
PiBHsIHHS, KoegbiyieHm rpyxHocmi, Oemrighep.
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